

Applications

Space
Electronics
Avionics
Automotive

CONTACT FOR ALL SERVICES

+33 1 69 15 62 34 altoprestations@ijclab.in2p3.fr

THE RADIATION TEST FACILITY

VARIOUS BEAMS FOR RADIATION TEST

MAIN CHARACTERISTICS OF ALTO BEAMS

Beams	Energy	Maximum Flux	Environment test	Irradieted Surface
Protons	20 keV - 30 MeV	10 ¹² p/(s.cm²)	In air	
Electrons	1 - 50 MeV	10 ¹² e/(s.cm²)	-170°C to +200°C	Irradiated surface from 20 x 20 mm ²
lons	1 - 300 MeV	10 ¹² ions/(s.cm²)	Under vacuum Under gas pressure	up to 30 x 30 cm ²
Neutrons	0.5 – 8 MeV	10 ⁸ n/s/sr	In air	Up to 10 x 10 cm ²

ADDITIONAL FEATURES

- Real-time flux measurement
- Scanning beam frequency: 500Hz
- Beam size diameter: 2-300 mm
- Beam homogeneity > 90%
- Flux change over time: 10 mn
- Beam control: on/off
- All connector types for data acquisition
- Continous and pulsed beams
- Beam energy precision ≤10⁻⁵
- Beam energy stability ≤10⁻⁴
- E change over, approx. 30 mn
- Possibility of temperature cycling under vacuum from -170°C to 210°C with variable durations (with or without beams exposure)

THE RADIATION TEST FACILITY

PROTON AND ION BEAMS

New and specific chamber

- From protons to gold beams
- Light ion energy from 1 MeV/u to 10 MeV/u
- Motorized target support
- Several targets can be irradiated at ones
- Target temperature from -170 to 200 °C
- All connector types for data acquisition
- Beam scanning system
- Medium and low ion energy/u
- Stable and accurate low E and flux

lon	Energie (MeV)	LET [MeV cm ^{2/} mg)]	RANGE (μm)
Protons	30	1.47E-02	4.94
⁴He	43	1.321E-02	8.021
¹² C	100	1.431	18.74
¹⁶ O	114	2.7773	11.76
¹⁹⁷ Au	290	78.58	25.04

Contact

+33 1 69 15 62 34 altoprestations@ijclab.in2p3.fr

THE RADIATION TEST FACILITY

HIGH FLUX NEUTRON BEAMS

LICORNE (Lithium Inverse Cinematics ORsay NEutron source) is a unique, high-flux, directional neutron source. The neutron production is achieved using the intense primary beams of ⁷Li, which result in secondary beams of focused neutrons in cones with opening angles between 10 and 25 degrees.

Main characteristics

- Energie 0,5 to 8 MeV
- Flux/fluence up to 108 n/s/sr
- •The beam diameter is about 10 mm
- Irradiations take place in air

Advantages of the natural directionality of neutron beam

- The target/sample can be placed close to the source
- The neutron background is exceptionally low due to the highly non-isotropic neutron emission and the large volume of the experimental zone

+33 1 69 15 62 34 altoprestations@ijclab.in2p3.fr

